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Abstract

The typical subroutines that compute sin(z) and exp(z) bear little
resemblance to our mathematical knowledge of these functions: they are
composed of concrete arithmetic expressions that include many mysterious
numerical constants. Instead of programming these subroutines conven-
tionally, we can express their construction using symbolic ideas such as
periodicity and Taylor series. Such an approach has many advantages: the
code is closer to the mathematical basis of the function, less vulnerable
to errors, and is trivially adaptable to various precisions.
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;;; calculate sin(z * (pi/2)), -1 <= z < 1
;;; error < .5e-9

(define (sine-quad z)
(let ((z2 (* z z)))

z

(+ 1.57079632662143
(* z2

(+ -0.64596409264401
(* z2

(+ 0.07969258728630
(* z2

(+ -0.00468162023910
(* z2

(+ 0.00016021713430
(* z2

-0.00000341817225

(define (sine x)
(let ((quad (floor x (U pi 2.0))))

(let ((phase (- (mod (+ quad 1.0) 4.0) 1.0)))
(if (> phase 1.0) ;sin(pi+z)=-sin(z)

(- (sine-quad (- phase 2.0)))

(sine-quad phase))))
.'2

4' Figure 1: A Conventional Sine Routine in Lisp.

1 Introduction

Scientific subroutines such as sin(x) and exp(x) have few abstractions, are lit-
tered with numerical constants, and are tailored to specific machines. A Lisp

N-, translation of a typical sine subroutine is given in figure 1. Vhat is it doing?
,Where do these multidigit constants come from? We should be suspicious of

any code that looks like this; perhaps someone has miscalculated or mistyped
one of the constants. The problem with this code lies in the poor description
that numerical programmers use: they write down the results of a calculation
(eg, 1.57079632662143) rather than what the calculation is (eg, first term of an
economized Taylor series).

This poor description is unnecessary, and this paper provides an alternative
called Constructive Programming (Cl;). Instead of writing a subroutine that
computes the value of tle sine function, the programmer writes code to con-
struct the subroutine that computes a %altii. He essentially describes how he
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would write the program rather than merely writing it. This level of indirection
improves the clarity and the believability of the programs. A further Ienfit
of CP is that a single description specifies a family of subroutines: just cliaig-
ing the number that specifies the accuracy will generate the single. double. ,r
quadruple precision versions of a subroutine.

Constructive Programming can be as efficient as the conventional metliods
because the extra work of manipulating the constructiv description is ,ssn-
tiaily carried out at "compile time". The meaning of "compile tiriie" in a d -

scription based on higher order procedures is more general than when we ri
the compiler, and so CP can also produce efficient subroutines at "run t ime'.

In the following sections, the sine routine will be rewritten iin a roilstrllol\,

style. Initially the code will focus on describing the sine function and will i i r
the issue of efficiency which is taken up in the later sections.

The procedures given here are in the Lisp dialect Scheme[l]. The act ual cod!-
was written in Common Lisp[4], but its higher order procedures are syitact ically
more cumbersome.

2 Reducing the Interval

One of the most obvious things a sine routine does is exploit the periodicity of the
o4: sine function to map the sine's infinite domain onto a finite interval. The sine

routine produces an approximation to the sine function, and approximations
are most efficient if they cover only small intervals. Reducing the interval of
approximation also eases the demand for high precision arithmetic.

lere is a definition of a sine routine that maps the argument into the interval
[-,r/2, 3-r/2] (this particular interval is used because it is symmetric about 7r/2

a property that is important in a transform below). The routine sine-full
is described below.

(define (sine-fcn x)

(let ((cycles (floor (U (+ x (U pi 2)) (* 2 pi)))))

(sine-full (- x (* cycles (* 2 pi))))))

Exploiting periodicity is something that we will do many t inies in the con-
struction of mathematical subroutines, so it is worthwhile to encapsulate the
idea of reducing an interval down to one period in a Iigler order procedire.

(define (period-maker fcn a period)
(lambda (x)

(let ((cycles (floor (- x a) period))) -
(fcn (- x (* cycles period))))))

U This procedur takes a procedure fcn that is defined on [a. a+period] and
returns a procedure tlhat replicates thait function cer the rest of tle real liue.
The code above is now achieved using period-maker:
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(define sine-fcn
(period-maker sine-full pi 2)) 2 pi)))

A further reduction of the interval of approximation uses the reflective sym-
metry of the sine function about 7r/2.

(define (sine-full x)
(sine-half (if (< x (U pi 2)) x (- pi x)))))

As before, a higher order procedure will express this reflective symmetry.

(define (reflection-maker fcn a)

(lambda (x)
(fcn (if (< x a) x (- (* 2 a) x)))))

(define sine-full
A* (reflection-maker sine-half (U pi 2)))

\While other trigonometric identities can be applied to further reduce the interval
* of approximation, they are usually not beneticial for reasons beyond the scope

of this paper.
These procedures exploit properties of the sine function in order to reduce

the routine's argument to a small interval (in this case, the domain of the
as vet undefined procedure sine-half: [-r/2, fr/2]). There are no obscure
constants and we should feel confortable with the trigonometric identities used.
We must still address, however, the method of generating values of the sine over
this reduced interval. The next section discusses the construction of a sine

- approximation on the half period.

-3 Power Series Approximations

- -A transcendental function such as the sine function can be represented by a
Taylor series:

_ ! i,,(a) = l~i0 (2i + 1)!Z2i

This particular Taylor series is absolutely convergent for all values of x. Notice
*that there are no miuhiidigit magic constants in the description of the Taylor

series.
A simple way to procedirally represent lie ith term of the sine power series

is as a simple funct'i0n.

(define (sine-term i)
(term-make UI (expt -1 i)

(factorial (+ (* 2 i) 1))) coefficient
(+ (* 2 i) 1))) ; power

%%'N
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The function (term-make a b) produces a representation of ab . The sine--
term procedure is a finite description of the infinite series. In the code that
follows we will use this procedure as the representation of the sine function.

It would take infinite time to use all the terms of a power series, so we must
have some method of truncating the series to a finite number of terms. The first
n terms of the power series can be turned into a polynomial (which we will call
a termlist) with this code.

(define (sine-truncated-series n)
(if (< n 0)

(termlist-make)
(termlist-adjoin (sine-term n)

(sine-truncated-series (- n)))))

The procedure termlist-make creates a termlist with no terms: termlist--

C., adjoin produces another termlist that has one more term. The general version
that will truncate a power series represented by a term function is:

(define (truncated-series term-fcn n)
(if (< n 0)

(termlist-make)
(termlist-adjoin (term-fen n)

(truncated-series term-fcn (I- n))))))

Thus we can rephrase the truncated sine series more simply as

(define (sine-truncated-series n)
(truncated-series sine-term n))

Now, with the aid of a function termlist-eval that evaluates the polyno-
nmial represented by a terrnlist for a particular point, we can approximate the
sine function with our truncated series. For example, if we need only the first,
10 terms of the series to get a required accuracy, then we could use this code to
evaluate the sine function.

(define (sine-half x)
(terlist-eval (sine-truncated-series 10) x))

While this routine will compute values of the sine function, it has a couple
of severe problems: we don't know how accurate it is, and it. is ridiculously slow
and inefficient. The next sections will fix these problems without changing the
basic strategy.

• ° 4 How Many Terms Should be Used?

The discussion in the previous section got rid of many magic numbers, but
didn't eliminate all of them: the number of terms to include in the truncated
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series is a magic number, so let's get rid of it. For a particular accuracy and
. a particular argument, we need to know the number of terms needed to attain

that accuracy.
We should not truncate a series until we know that its terms are definitely

getting smaller. Notice that the individual terms of the sine series

sin(X) = E (- )i (2i +1 )!---- .

are monotonically decreasing when the denominator starts growing faster than
the numerator. This point happens when 2i + I > x.

The absolute error in the truncated sum of an alternating sign, absolutely
convergent, series is less than the magnitude of the first term neglected. Thus
we can write some code to tell us how many terms of the series we need to take.
The function term-eval evaluates the term at a particular value of x.

(define (sine-number-of-terms eps x)
* (do ((i (ceiling (U (- x 1) 2)) (1+ i)))

((< (abs (term-eval (sine-term i) x)) (abs eps))
(I- i))))

(sine-number-of-terms 1.0Oe-6 (/ pi 2)) -> 5
(sine-number-of-terms O.Se-9 (/ pi 2)) -> 7

Thus we only need 5 terms (which is a 9th degree polynomial) to find the sine
of 7r/2 to 6 digits.

I'. In order to generalize these ideas to other alternating sign, absolutely con-
vergent, power series, we must specify when the absolute value of the series
terms are monotonically decreasing and when the terms have are small enough
to be ignored. When the series turns monotonic is, in general, a function of the
series variable x. so we should use a lambda expression to specify it. For the
sine example, we would use

(define (sine-mono x)

*.. (ceiling (U (- x 1) 2)))

We only require that this function be conservative in its estimate.
With the aid of the monotonic function, we can determine the number of

terms required to achieve an accuracy eps.

'I' (define (number-of-terms term-fcn mono-fcn eps x)

(do ((i (mono-fcn x) (1+ i)))
((< (abs (term-eval (term-fcn i) )) (abs eps))

(1- i))))
(number-of-terms sine-term sine-mono 1.Oe-6 (U pi 2)) -> 5

r$ Rolling everything together, we can calculate an arbitrary (alternating sign,
absolutely convergent) truncated power series that will achieve a desired accu-

racy.

'p C)
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(define (truncated-series-eps term-fen mono-fcn eps x)

(truncated-series term-fcn
(number-of-terms term-fcn

mono-fcn
eps x)))

%. Thus we can define a version of the half period sine routine using no magic
numbers that is accurate to 9 digits.

(define sine-half-9
(lambda x)

(termlist-eval
." (truncated-series-eps sine-term sine-mono

1.0e-9 ( pi 2))
% .x)))

We can, in principle, generate arbitrarily accurate routines this way. Using ratio-
-V nal arithmetic (because our floating point numbers were not accurate enough!),

we have generated sine routines that have 346 digits of precision.

5 Compile Time and Run Time

* The unfortunate feature of the code we've shown so far is that every time we
call the sine routine, we have to recompute the truncated power series and then
evaluate it. That's a lot of overhead. It would be better if the truncated series
could be determined once and never computed again.

A trivial change to the code above calculates the termlist only once - when
the procedure is defined.

(define sine-half-9
(let ((terms (truncated-series-eps sine-term sine-mono

1.0e-9 (/ pi 2))))
(lambda CW)

(termlist-eval terms x))))

* In this version. the termlist is explicitly calculated and then squirreled away ill
the environment of the closure (see figure 2) made by the lambda expression.
Whenever the closure is called, it accesses the termlist stored in the environment
instead of recomputing it.

Traditionally. this optimization is a compile time versus run time distinction.
)oing things at compile time requires doing them only once: things (lone at. run

time are done again for each call. While intuitively this distinction is what
we want, the world of higher order procedures is a little more complicatcd.
In conventional programming languages, procedures are only built at, compile
time, but Lisp lets them be built, at run time. The code above calculates the

0. 7

. . . .

S. '" ' - ... X " . .. - .-. . j . % ,. .,.. , . , , . . . . . ,



global environment

"'sinehl-

" termlist

d (lambda x) (termlist-eval termlist))

Figure 2: Environment Diagram for sine-half-9.

truncated series when the procedure (closure) is defined (definition time); it
makes no difference whether the code is interpreted or compiled, the ternlist
will only be calculated once.

In theory, Lisp compilers could do extensive optimization of these procedures
* using transformations such as constant folding of the termlists and procedure in-

tegration of termlist-eval. In practice, Lisp compilers are not that advanced
and there will be a performance penalty caused by lexical lookups, procedure
call overhead, and the inability to compile out general type dispatches. These
problems should be short-lived, but even if they are not, they have minimal
impact on constructive programming. One can, for example, recast the above
procedures as macros whose compile time expansions include these optimiza-
tions. Though that approach is expedient, it is not an appropriate long term
methodology. Writing macros that do such optimizations also runs counter to
the point of this paper: we want the programming language, not the program-
mer, to do the low level work.

6 Economization

By exploiting the periodicity and the symmetry of the sine function, we pro-
duced a sine routine that uses a finite number of the terms of the original Taylor

8%
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Sin, Approximation Error: 7 Term Truncated Taylor
err( r = sin*(x) - sin(x)
8.00d-13

7.00d-13

6.00d-13

4. 0Od-13

3.00d-13

2.00d-13

1.00d-13

0 .d+O _
0.000 0.200 0.400 0.600 0.800 1.000

argument x

Figure 3: Uneconomized Sine Approximation

series. We could use this routine, but there are some other improvements that
should be made. A Chebyshev economization [3] of the truncated series reduces
the number of terms that need to be calculated. Economization is a trick that is
worthwhile whenever a polynomial will be evaluated repeatedly (as in a subrou-
tine library). The reduction in computation time can be significant: a 7 term
polynomial can be reduced to 5 terms using a Chebyshev economization.

The reason that the truncated series for sine can be economized is that most
of its error is concentrated near the end points of the approximation interval.
Economization spreads this error throughout the interval. The initial error curve
of a 6 term sine series is shown in figure 3. An economized error curve is shown
in figure 4.

The expression

(chebyshev-economization-scaled s poly initial-error error-bound)

takes a polynomial (termlist) whose domain is -s to s and whose initial er-
ror is initial-error and returns a new polynomial whose error is less than
error-bound. It is an error if initial-error > error-bound. The routine
uses Chebyshev polynomials.

Figure 5 gives a definition of sine-half-maker that uses an economized
series to produce a sine function to a desired accuracy.

% 4
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Sine Approximation Error: 5 Term Economized Taylor
error = sirA Cx) - sin (x)
+2 .5d-11__________

+2 .0d-l11_____ ___

+1 .5d-11 ____

+1. 0d-11

+5.0d-12_____

-5. 0d-12

-1.06-11

-1 .5d-11_____

-2.0d-l11_____ ___

-2 .5d-11 _____ ____ ____ ____0.000 0.200 0.400 0.600 0.800 1.000
argument x

Figure 4: Economized Sine Approximation

(define Cine-half-maker epa)
(let ((terulist

Cchebyshev-economization-scaled
Ul Pi 2)
Ctnincated-series-eps sine-term sine-mono

UI eps 10) Ul Pi 2))
Ul epa 10)
epa))

(lambda Wx
(termiat-eva. termlist X))))

Figure 5: sine-half-maker
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7 Sine Summary

Programming a sine routine constructively involves specifying a few steps. The
domain of the function is reduced to a reasonably small interval by employing
the periodicity and symmetry of the sine function. \Within that interval, the
sine function is approximated by an economized Taylor series. In order to be
readable and believable, a program should reflect these steps; the code in figure
6 tries.

8 Bessel Functions

Constructive Programming is not limited to sine routines; it applies to a broad
class of problems that occur in subroutine libraries and even includes some
exotic functions. For example, these methods can be used on Bessel functions.
Abramowitz[2] (section 9.1.10) gives the power series expansion for the Bessel
functions of integer order v as:

,. 00o ( 1/4:2) k

J,(z) = (z/2)1 k !r(v + + 1)
4"4,."k=0

Translating this expression into the termlist representation (and making use of
F(n + 1) = n! for integer n gives us a term-maker function:

(define (bessel-term-maker v)
(lambda (k)

(term-make (* (expt (U 1 2) v)
( (expt (/ -1 4) k)

(factorial k)
(factorial (+ v k))))

(+ v (* 2 k)))))

A term-maker function is used here because the Bessel functions are a parame-
terized family. Calling bessel-term-maker with an argument v gives us a term
function for that order Bessel function.

The Bessel function series is monotonic decreasing if IzI/2 < k, so we can
* determine the term after which the terms are monotonically decreasing:

(define (bessel-mono-maker v)

(lambda (x)
(ceiling ( (abs x) 2))))

A-"~ These two functions now let us construct a termlist to arbitrary accuracy.

bessel-series-eps returns a termnlist for the Bessel function of order v that
has accuracy eps as long as the argument does not exceed the value x.

%= %"%. %,.
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;; Describe the Taylor Series
(define (sine-term i)

(term-make (U (expt -1 i)
(factorial (+ (* 2 i) 1)))

(+ (* 2 i) 1)))
(define (sine-mono x)

(ceiling (U (- x 1) 2)))

;; Build a half period sine to any accuracy
(define (sine-half-maker eps)

4 (let ((termlist
(chebyshev-economization-scaled
(U pi 2)
(truncated-series-eps sine-term sine-mono

* (I eps 10) (I pi 2))
(/ eps 10)
eps)))

(lambda (x)
(termlist-eval termlist x))))

;;; Expand a half period sine to the real line
(define (sine-maker eps)

(let* ((sine-half (sine-half-maker eps))
(sine-full (reflection-maker sine-half (/ pi 2))))

(period-maker sine-full (- (U pi 2)) (* 2 pi))))

;;; Make an instance accurate to 9 digits
(define sine

4 (sine-maker 0.Se-9))

Figure 6: Sine Routine Without Magic
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(define bessel-0-8-c

(let* ((a 3.OdO)
(eps 5.Od-8)
(eps2 (U eps 1000))

(termlist (chebyshev-economization-scaled
a
(bessel-series-eps v a eps2)
eps
eps2)))

(lambda x)

(termlist-eval termlist x))))

Figure 7: bessel-0-8-c

*! (define (bessel-series-eps v x eps)

(truncated-series-eps (bessel-term-maker v)
(bessel-mono-maker v)
eps x))

'.) Chebyshev economization is also appropriate here and also little trouble.
N% Figure 7 has an economized Bessel procedure that is accurate to 7 digits. A

plot of the approximation error is given in figure 8.
Earlier we were suspicious about code that used magic numbers. Abramowitz.

in section 9.4.1, gives the coefficient values for a Bessel function approximation
over the interval [-3,3] with an accuracy of 5.OE-8. A plot of the approxima-
tion error is given in Figure 9. The approximation that we computed (without
magic numbers) has just as many terms as in the Abramowitz reference, but
it is 40 times more accurate. The approximation they give is not wrong
because they correctly state the error bound, but it is sad that they needlessly
threw away some available accuracy.

9 Summary

This paper has only shown a few techniques for approximating functions, but
there are many others. The primary goal has been to show how to express code
in terms of its development rather tlhan as a sequence of arithmetic operations.
Such an expression makes explicit the properties of the approximation - its
accuracy, for example, is an integral part, of the code rather than a comment
t that the programmer just happened to add to the source code amid several
mysterious numbers. A further benefit. of this approach is that one expression
of a function will provide single, double, and quadruple precision instances.

13
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Bessel=Approximation Error: Calculated Coefficients
error JO*(x) -JO(x)

+1 .50d-9 ____ ___ ___

+I. Ood- 9_______

+5.0d-10

+0 .d+0 ___

-5.0d-10_______

- 1 '00d-9 71_______

-1 . 506-9________ ________

0.000 0.500 1.000 1.500 2.000 2.500 3.000
* argument x

Figure 8: Error curve for economized Bessel function.

Bessel Approximation Error: NBS Coefficients
error = J0*(x) -J0(x)

+1. O0d-B ____________________ ___

+:.d+_

-1.00~d-8 ___ ___

-2. O0cd-8____ ____

-3.00~d-8____ ____________

S:-4.0d-8

C.000 0.500 1.000 1.500 2.000 2.500 3.000
argument x

V Figure 9: Error curve for NBS Bessel function
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The paper also argued that run time efficiency does not suffer. While the
construction of a function does require doing a mathematical derivalion, that
derivation need on? t,e done once. The actual calls of the fiuction are not
encumbered.

There is, however, still a lot of magic in the descriptions given here. 'lIo
code has :implicitly assumed that series are alternating sign and absolutely con-
vergent, but conventional routines make these same assumptions. There ar,'
other problems that the above discussion (lid not address: desired error metric
(eg, al)solute error or relative error), more detailed descriptions of algrithmi
restrictions (eg, argument ranges and argument types), and the accuracy f ti,
arithmetic.
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